The S·O·S Services Program is a mutual commitment to protect the performance and value built into your Cat and non-Cat equipment. Our S·O·S Program will provide you a clear picture of what’s happening inside your equipment, we will help increase productivity, reduce repair costs, schedule downtime and lower your overall operating costs. Through wear metal, oil condition, oil cleanliness and coolant analysis, abnormal wear and problems are caught before they progress to a complete failure.

For more information about Quinn S·O·S Fluids Analysis Laboratory or any of our capabilities, please call David Poteete at 559-891-5496 or email david.poteete@quinncompany.com.

ALL OIL AND LEVEL 1 COOLANT SAMPLES ARE COMPLETED AND REPORTED THE SAME DAY THAT THEY ARRIVE IN OUR LABORATORY.

- Diesel Fuel samples are completed in 5 business days
- All reports can be provided via either e-mail, fax or mailed to your company
- You will also have access to view your test results on our company website

SAME DAY TURNAROUND TIME
WEAR METAL ANALYSIS
Inductively Coupled Plasma (ICP) detects wear elements, oil additive package elements and the elemental constituents of some contaminants. These concentrations are listed in parts per million (ppm) and can detect particles up to about 10 microns in size. By looking at wear particles this small, we can catch problems when they’re just beginning, allowing you to become proactive rather than reactive to a failure. Different combinations of key elements allow us to present areas of abnormal wear.

OIL CONDITION ANALYSIS
Oil Condition analysis is used to determine if the oil has degraded. The condition of used oil is determined by Infrared Technology. Infrared analysis determines soot, oxidation, vibration and sulfur products. This test is run on all engine, transmission and hydraulic systems. Total Base Number (TBN) and Total Acid Number (TAN) can also be analyzed at an additional cost. Your S·O·S Analyst uses established guidelines or trend analysis to determine if the oil has reached the end of its useful life.

OIL CLEANLINESS ANALYSIS
Particle Count Technology determines the amount and size of particles in non-engine compartments. Particle Count analysis is used to evaluate particles in areas of engine, transmission and hydraulic systems or transmissions, using oil-to-water pressure washing equipment. Equipment that operates in wet conditions may experience water contamination will increase wear. High levels of coolant in the oil will produce sludge and total oil deterioration.

LEVEL 1 COOLANT ANALYSIS
Engine failures and hydraulic systems all suffer from poor coolant condition. Nearly half of all engine failures are caused or accelerated by poor cooling system maintenance. If the coolant is not within the specified range, it will overheat resulting in lost lubricity and rapid deterioration. The following tests are performed on all coolant samples sent to our S·O·S Laboratory.

- Percent Glycol (boil and freeze point protection)
- pH
- Conductivity
- Nitrite
- Foam
- Sediment
- Color
- Oil or Fuel presence
- Indicator of Extended Life Coolant (ELC) or Conventional Coolant

For Level 2 Coolant Analysis, contact Quinn for more information.

GAS CHROMATOGRAPHY (GC) ANALYSIS
Gas Chromatography Technology determines exactly how much fuel is leaking into a compartment. The most significant problem associated with fuel dilution is low viscosity. Low viscosity and high operating temperatures can cause oil films to become dangerously thin. If the oil film does not have adequate thickness, moving parts may experience direct contact. This could result in scuffing or seizure of moving parts and component failure. If fuel dilution exceeds the recommended levels, it is generally because of:

- Internal fuel injectors
- Worn fuel injectors
- Failed fuel injector
- Extended idling
- Incorrect timing

DEVELOPMENT OF THE PERFORMANCE OF YOUR EQUIPMENT
S·O·S SERVICES PROVIDE YOU WITH VALUABLE RESOURCES TO CARE FOR YOUR EQUIPMENT.

PROTECT THE PERFORMANCE OF YOUR EQUIPMENT